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Abstract. We present results from a computer simulation study of a radical initiated kinetic 
growth model in which the radicals (initiators) are created with a constant rate rc .  
Simulations of the growth process were carried out on simple cubic lattices as large as 
100 x 100 x 100 for two values of the initiator creation rate. Finite-size scaling analyses of 
the bulk properties yield critical exponents which are the same, to within error bars, as 
those found in similar kinetic gelation models and in percolation studies. The critical 
amplitude ratio C / C '  is consistent with the values obtained in the kinetic gelation studies 
with fixed initiator concentrations but is clearly different from percolation values. The 
cluster size distribution shows the same monotonic behaviour as seen in percolation and 
is markedly different from the oscillatory behaviour seen in an investigation of a similar 
gelation model. The scaling properties of the cluster size distribution, however, cannot be 
described using simple droplet theory. Instead, we use a generalised scaling form which 
produces a good fit to the cluster data. 

1. Introduction 

In recent years considerable effort [ 1-12] has been concentrated on the study of models 
for irreversible gelation in which an  infinite macromolecule (gel) is formed by the 
joining of a collection of smaller macromolecules (sol). This sol-gel transition was 
first described theoretically by Flory [ 11 and  Stockmayer [2], who used a simple model 
for percolation on a Cayley tree. DeGennes [3] and Stauffer [4] later drew the analogy 
between gelation and critical-point behaviour and  suggested that percolation on a real 
lattice would provide a more realistic description of the sol-gel transition. However, 
realistic gelation processes, such as addition polymerisation in which macromolecules 
are formed through the crosslinking of linearly growing polymers, involve kinetic 
aspects in the formation of macromolecules. This kinetic gelation process has been 
extensively studied through computer simulations [ 5 -  121. 

One  major goal in studies of kinetic gelation models has been to determine how 
the physical parameters of a given model affect its critical behaviour. For example, 
Herrmann et al [ 6 ]  have extensively studied a three-dimensional model for addition 
polymerisation in which polymer clusters are grown from a fixed initial concentration 
of radicals (initiators). Their results indicate that changes in the initiator concentration 
affect the universality class of the model, whereas monomer functionality, i.e. the 
number of available bonds per monomer, does not. The universality class is determined 
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by the values of various critical exponents and possibly critical amplitude ratios. Other 
three-dimensional studies [7-91 suggest that poison seems to affect universal properties, 
whereas solvent molecules, monomer mobility and chain-preferred reactions d o  not. 
Investigations [ 10, 111 of cluster size distributions in three-dimensional gelation models 
also support the notion that kinetic gelation belongs to a universality class different 
from percolation, showing non-monotonic behaviour in the cluster distributions com- 
pared with the monotonic distributions seen in percolation [ 131. 

To further investigate the effects of different physical processes on kinetic gelation 
models, we have studied an  irreversible, kinetic gelation model in three dimensions in 
which initiators are created with a constant rate rc .  A similar model, which produces 
initiators to keep the concentration of non-trapped, non-annihilated initiators fixed 
throughout the growth process, has been investigated by Pandey [ 71 using computer 
simulations. His investigation, however, differs from ours in that the initiator concentra- 
tion in our model increased during the growth process and  our initiators were created 
in a different manner. In addition, Pandey’s study was not concerned with critical 
phenomena. 

It is important to emphasise that our model is the same as that studied by others 
(see references in [ 1 l ] ) ,  except for the additional kinetic aspects associated with the 
creation of initiators at different times in the growth process. We consider growth 
processes in which the timescale for creating initiators is roughly the same as the time- 
scale for forming bonds. In the model described in [5,6], the timescale for the creation 
of initiators is essentially zero compared with the timescale for the formation of bonds. 
Conservation of the number of initiators throughout the growth process [7] corresponds 
to steady-state conditions in polymer formation. 

In the following section we describe the model and details of the computer 
simulations, and we provide a brief theoretical description of the analyses used in the 
study. Section 3 contains the analyses of bulk properties and cluster size distributions 
and  a discussion of the results. A summary of our conclusions can be found in § 4. 

2. Background 

2.1. Model and simulation method 

Our  model consists of four-functional monomers positioned on the sites of an L x L x L 
simple cubic lattice with periodic boundary conditions. Growth of polymer clusters 
begins with the creation of initiators (radicals with one unsaturated bond) at a constant 
rate r c .  This rate is defined as the probability per unit time of creating an initiator. 
In  this model, one unit of time ro  is defined as an  attempt to create an  initiator; rc will 
henceforth be given in units of t i ’ .  

Once an  initiator is created, its unsaturated bond is filled by satisfying one bond 
of a chemical double bond in a monomer and leaving the other bond unsatisfied. This 
unsatisfied bond (active centre) is then free to react with an available nearest neighbour. 
After each attempt has been made to create an  initiator with probability r c t O ,  an  attempt 
is made to form a bond between an  active centre and a neighbouring monomer site. 
Figure 1 shows a snapshot of the growth process for several time steps. As one can 
see from this figure, a number of initiators have been created after time r ,  has elapsed, 
and  many of the active centres produced by these initiators have formed bonds between 
neighbouring monomers. After times r,  and t 3 ,  additional active centres have been 



Kinetic gelation with constant initiator generation 4697 

0 0  0 0 0  
0 0 +,.p 

0 0 0  
0 0 0 0  

o v p o  0 0 
0 0 0 0 0 0  

f, 

Figure 1. Schematic view of growth within a 
single layer after simulation time steps f , ,  f 2  

and 1 , .  Open circles represent tetrafunctional 
monomers and full circles represent monomers 
that have initiators bonded to them. Starred 
circles indicate the current position of active 
centres. Bonds, represented by lines between 
monomers, include those formed with adjacent 

+3 layers. 

produced by the creation of new initiators (some of these form new monomer clusters), 
and  additional monomer bonds have been formed from these active centres. 

The algorithm used for bond formation between monomers rtarts by randomly 
choosing an  active centre and  one of its nearest-neighbour ( N N )  sites. If the N N  site 
is not fully occupied, a bond is formed between the sites. The new site then becomes 
the active centre, provided it was not one to begin with, since it now has an unsatisfied 
bond. Propagation of an  active centre terminates when it bonds with another active 
centre (annihilation) or  when all of its neighbours are inaccessible (trapping). 

After a specified number of bonds have been formed, we calculate the chemical 
conversion factor p (defined as the fraction of total possible bonds already formed), 
the number of clusters n,  containing s monomer sites, the average molecular weight 
or ‘susceptibility’ 

x = s2ny 
I 

and the gel fraction 

G = 1 -1 sn,. 
c 

The sums in (1) and  (2) exclude the largest cluster (macromolecule). Averages for the 
cluster numbers, the susceptibility, and the gel fraction are taken over several samples, 
i.e. different starting positions for the initiators created with rate r c .  
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In an infinite system G is zero for all p up to the gel point p c ;  for p > p c  the gel 
fraction grows as 

G = B’PIp (3)  

with 9” = ( p  - p c ) / p , .  In  the vicinity ofp, the susceptibility also shows critical behaviour 
of the form 

C-P-Y P < P c  

P ’ P C  
x p = {  c+p’-Y 

where 9 = ( p , - p ) / p ,  C- is the critical amplitude below p ,  and C’ is the amplitude 
above p c .  The ratio of critical amplitudes is defined as R = C-/C’. The correlation 
length 6 diverges at p c  as 

In most polymerisation processes the initiator creation rate is small in comparison 
with the bond formation rate [14] and, therefore, we have limited the creation rates 
under investigation to small values. We have chosen two rates, namely rc = 0.005 and 
rc = 0.05, in order to maintain a low creation rate yet still enable us to make comparisons 
between rates which differ by an order of magnitude. The analyses were performed 
on lattices with L between 14 and 100; the number of samples used in the averages 
ranged from 800 to 10,000. 

2.2. Finite-size scaling 

In an infinite system, the susceptibility diverges at the gel point, which corresponds 
to an infinite correlation length 6. For finite lattices, the susceptibility deviates from 
infinite lattice behaviour, e.g. it has a finite peak at pc when 6 is larger than the system 
size L. Data obtained for finite lattices can be related to the corresponding infinite 
lattice singularities through the use of finite-size scaling theory. This approach, first 
developed for thermal phase transitions [ 151, expresses bulk quantities of L x L x L 
systems in terms of homogeneous scaling functions of a variable x = P L ” “  or x = 
9”L””. For the ‘susceptibility’ the form which we use is 

x p  = L . ’ / ” f ( x )  ( 6 )  

G = L - ’ / ” g ( x ) .  ( 7 )  

where f ( x )  is a scaling function. For the gel fraction the appropriate form is 

(These scaling forms are valid asymptotically for large L.)  Thus by making double 
logarithmic plots of xpL-”” against x and G L P / ”  against x, we can vary pc  and the 
critical exponents until the data collapse onto single curves (one curve for p < p c  and 
one for p > p c )  definingf(x) and g ( x ) ,  respectively. In addition, the behaviour of ( 6 )  
and ( 7 )  must correctly reproduce the infinite lattice critical behaviour in the limit that 
L +  a. This restriction requires that 

f ( x )  + x - y  x + c c  (8a)  

g ( x ) + x P  X + c C , P > P c  (86) 

and the scaling plots must obey this restriction as a consistency check. 
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2.3. Droplet scaling theory 

As bonds are formed in the system a distribution of clusters results in which each 
cluster is composed of a collection of sites which are connected to each other at least 
once by an unbroken string of bonds. This situation is similar to that which occurs 
for thermal transitions where ‘droplets’ of ordered material form. The bulk properties 
for these transitions have been described in terms of a droplet theory proposed by 
Essam and Fisher [ 161 and used by Stauffer [ 171 to analyse random percolation. In 
terms of our variables the cluster size distribution n , ( p ) ,  which gives the number of 
clusters of size s, should have the following behaviour near p c :  

- (Ll) 400 l b )  e. 
: *  * *  

320 0 .  

- 2 40 

X 

- 160 

0 80 
A 4  

e o o  

4 

The moments of this distribution can also be related to bulk properties. For example, 
the second moment of n ,  ( p )  yields the critical behaviour of the susceptibility through 

3. Results and discussion 

3.1. Bulk properties 

The ‘susceptibility’ x and the gel fraction G, near the gel point p c ,  were investigated 
as a function of chemical conversion factor p and lattice size L. Figure 2 shows plots 
of ,y against p for two initiator creation rates r c .  Stronger finite-size effects can be 
seen in the plot corresponding to the smaller creation rate rc = 0.005 when compared 
with the larger rate rc = 0.05. The peak in the susceptibility for rc = 0.05 is roughly five 
times larger than the peak for rc = 0.005 when comparing data for the same lattice size. 
There is also a large shift in the effective gel point p c ( L )  for a given lattice size L for 
the smaller value of rc and very little shift in pc(  L )  for the large creation rate. Similar 
finite-size effects are seen in plots of G against p for both values of rcr as shown in 
figure 3. Pronounced finite-size effects were also seen in a similar kinetic gelation 
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Figure 3. Gel fraction G as a function of p for two values of r, : ( a )  rL = 0.005, ( b )  ri = 0.05. 
Curves are shown for several different values of 15: 2 0 ( 3 ) ,  30(A), 40(C), 6 0 ( 0 )  and lOO(A). 

study by Chhabra er a1 [ l l ] .  These effects became more evident as the initiator 
concentration c ,  decreased. Our results are consistent with these findings since the 
effective initiator concentration, proportional to the number of initiators present, at p c  
is smaller for rc = 0.005 than for rc = 0.05. 

Finite-size scaling [ 6 ,  151 analyses are used to determine the critical exponents p, 
y and Y, the critical amplitude ratio R,  and the gel point p c .  By plotting X ~ L - ~ ' "  
against the scaling variable x one varies the parameters y, v and p c  until the data for 
every lattice size fall onto a single, universal curve representing the function f ( x )  in 
( 6 ) .  Figure 4 shows an optimal fit of the scaled susceptibility data for rc = 0.05 which 

10-6 I lo-' 1 10 lo2 lo3 

l 9 , " I L " "  
Figure 4. Finite-size scaling plot for the susceptibility x for r, = 0.05, p ,  = 0.0852, y = 1.85 
and v = 0.85. Curves are shown for several values of L: 3 0 ( 0 ) ,  40(A), 6 0 ( 0 )  and 100(0). 
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yield parameter estimates of y = 1.8 * 0.1, v = 0.80 + 0.07 and p c  = 0.0850 * 0.0007. These 
values for y and v are consistent with those found in a similar gelation model [6, 8, 
111 as well as percolation values [17]. Errors are estimated by finding the range of 
parameter values which gives a reasonable fit to the data. Deviations from the universal 
curve farther away from p , ,  i.e. larger values of x, are due to corrections to scaling. 

Similar procedures are carried out for the gel fraction by plotting GLP'" against x 
and varying b, v and p c  until the universal curve g(x), defined through (7),  is obtained. 
For initiator creation rate r, = 0.05, we obtain a best fit of the scaled gel fraction, shown 
in figure 5, with the parameters p = 0.40 I 0.07, v = 0.80 2 0.06 and p c  = 0.0850 * 0.0008. 
The values of v and p c  obtained in this analysis are in good agreement with those 
found in the analysis of the susceptibility. Deviations from the universal fit for large 
values of the scaling variable x are again due to corrections to scaling. In  both scaling 
analyses for rc=0.05 we were unable to use data for L<30 since correction terms to 
the simple scaling forms became important. Reasonable scaling plots of the susceptibil- 
ity and the gel fraction were not possible for r, = 0.005 because of the magnitude of 
the finite-size effects. 

lo-'  k- 

*. 

@I 
1 10 102 103 lo-' 

..p'L' 
Figure 5. Finite-size scaling plot for the gel fraction C for r, = 0.05, p ,  = 0.0852, 0 = 0.40 
and U = 0.85. Curves are  sho\*n for several values of L :  3 0 ( 3 ) ,  40(A), 6 0 ( 0 )  and loo(.). 

The ratio of critical amplitudes R = C- /Cf  for the susceptibility, which has been 
shown to be a universal quantity in percolation [18], is also estimated from figure 4 
by measuring the vertical distance between the two parallel lines drawn through the 
asymptotic regions above and below p c .  From this procedure, we find the critical 
amplitude ratio to be R = 5.1 * 0.9. This value is markedly different from the percolation 
value between 8 and 11 which suggests that our model may be in a different universality 
class than percolation. 

3.2. Cluster size distributions 

The distribution in the number of clusters n,  of size s has been investigated as a 
function of s and p .  Figure 6 shows a monotonic decrease in n,  plotted against s for 
creation rate rc = 0.05 and p near the gel point p c .  This monotonic decrease in n, with 
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Figure 6.  Cluster size distribution n,  at p, for rc = 0.05, L = 100. Data are averaged over 
several cluster sizes with ordinate values taken as a geometric mean. The slope of the 
straight line has the value ~ = 2 . 1 * 0 . 1 .  

s is seen for all values of p ,  which is the same qualitative behaviour found in percolation 
[ 131. Similar monotonic behaviour is observed for creation rate rc = 0.005 as shown 
in figure 7. Striking differences, however, are seen between the monotonic behaviour 
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x10-6 

10 r 

6 :  
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Figure 7. Cluster size distribution n,  at p ,  for L = 20 with ( a )  rc = 0.005, c ,  = 0.0; ( 6 )  rc = 0.0, 
c,=0.0003; (c )  r,=0.005, c,=0.0003 and ( d )  r,=0.05, c,=0.0003. 
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in our model and the oscillatory distributions observed in a similar gelation model 
[ l l] .  In that model, initiators are only created at the start of the growth process with 
concentration c I ,  and the observed oscillations in the cluster distributions, which are 
shown in figure 7, are due to the joining of clusters of a characteristic size s* to produce 
larger clusters whose sizes are a multiple of the characteristic size. Since new clusters 
are being formed at every stage of the growth process in our model, there will be no 
characteristic size emerging from the growth, i.e. s* = 1. 

Figure 7 also shows the effect of starting the growth process with an initial 
concentration cI of initiators and allowing new initiators to be created with rate rc .  
For rc = 0.005 and cI = 0.0003, one can still observe a characteristic peak in the cluster 
distributions at the gel point, although most of the oscillations have been damped out 
by the creation of new initiators. No characteristic size can be seen at p c  when rc = 0.05 
and c,  = 0.0003. 

According to (91, the cluster distribution n, exhibits power-law behaviour as a 
function of s at the gel point, i.e. n, - s C  for p = p c  and s+w.  This behaviour 
corresponds to the linear region, spanning more than two and one-half decades, 
observed in the log-log plot of n, against s (figure 6 ) .  The slope of the linear region 
yields a droplet exponent T = 2.1 * 0.1 which agrees with percolation values [ 191. 
Attempts were made to scale the cluster distributions for rc = 0.05 using the droplet 
scaling form giving in (9). These attempts, however, were unsuccessful for a wide 
range of values for U, T and p c ,  including the droplet exponents U = 0.48 and 7 = 2.1 
found for percolation (see figure 8). 

lo-' 1 

? I  Y 2 10-2 

c 

0 A 0  
0 A 0  
0 A D  

1 0 - ~  , 1 I 1 1 0 - ~  
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b o  I =  
b o  

IO-' IO+  IO-^ i o - '  1 10-~ 10-2 lo-' 1 

IP-p, ISU IP -P , lS~  

Figure 8. Droplet scaling plots for the cluster size distribution with rc = 0.05, p E  = 0.0850, 
T = 2.2, U = 0.48. ( a )  Scaling for p < p , ,  curves are shown for p = 0 . 0 7 7 3 ( 0 ) ,  p = O.O88O(A) 
and p = 0 . 0 8 2 7 ( 0 ) .  ( b )  Scaling for p > p c ,  curves are shown for p=O.O880(0) ,  p =  
0 . 0 9 0 7 ( A )  and p =0 .0933(0 ) .  

The cluster distributions were successfully scaled using a modified scaling form 
given by 

where U and T are the universal, droplet exponents and A and B are non-universal 
constants. This form reproduces the correct asymptotic behaviour for the susceptibility 
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when inserted into (10) and is the same form that was used in a previous gelation 
study [ l l ]  with s* = 1. Modified scaling plots of the cluster data above and  below pc  
for creation rate rc = 0.05 are shown in figure 9. Percolation droplet exponents (+ = 0.48 
and  T = 2.1 were used and  the parameters A, B, and pc  were varied to produce optimal 
fits for the scaled data. 

1 

l 8  
I I 1 

1 10 i o 2  io3 i o 4  1 10 102 103 10‘ 
1 0 - ~  U 

5 8 
Figure 9. Modified scaling plots for the cluster size distribution with rc = 0.05, p ,  = 0.0850, 
T =  2.2, u=O.48. ( a )  Scaling for p < p ,  with A = -5.0, E = -1.0, curves are shown for 
p=0.0880(0) ,p=O.O907(A)andp =O.O933(C) .  ( b )  S c a l i n g f o r p > p ,  w i t h A = 0 . 0 ,  B=3.0 ,  
curves are  shown for p = 0.0773(3) ,  p = O.O8OO(A) and  p = O.O827(Cl. 

4. Conclusions 

We have used finite-size scaling analyses of the bulk properties to obtain estimates for 
the critical exponents p ,  y and v and the critical amplitude ratio R = C-/C’ for 
initiator creation rate rc = 0.05. The critical exponents are, to within error bars, the 
same as those found in percolation and other kinetic gelation studies. Our best estimate 
for R is different to the ‘universal’ percolation value and is consistent with other kinetic 
gelation values. Reasonable scaling plots were not possible for creation rate rc = 0.005 
because of the strong finite-size effects. The shape of the cluster size distributions in 
our model are qualitatively the same as those seen in percolation, but they are strikingly 
different from the oscillatory behaviour observed in other kinetic gelation models. 
Analyses of these distributions, however, indicate that the scaling form which works 
well for percolation does not work well for this model. A modified scaling form, which 
works for other gelation models, produces good fits for cluster data above and  below 
the gel point. Although the creation of initiators with rate rc does affect the shape of 
the cluster distributions, it does not alter the critical behaviour observed in kinetic 
gelation. Our  results, however, d o  support the conclusion drawn by other gelation 
studies: namely, that kinetic gelation appears to be in a different universality class to 
percolation. 
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